

CUMBERLAND VALLEY ANALYTICAL SERVICES

Laboratory services for agriculture ... from the field to the feed bunk.

Water Analysis Report

Analysis Report For Copy To
Anderson Valley Farms Ocker, Cliff
Harrisonville , PA 17228

Sample ID	Date/Time Sampled	Date/Time Received	Date Reported
13245 012	05/30/2012 8:00 AM	05/31/2012 10:00 AM	01/09/2013

Farm/Client	Sample Description	Test(s) Requested
BORBA 16/17	WATER TROUGH-WELL WATER	LIVESTOCK SUITABILITY
		COLIFORM/ E COLI C

	Results	Farm Survey Average	Expected Levels in Drinking	Possible Problem Level for Cattle
pH	7.56	7.0*	6.8 - 7.5	< 5.5 or > 8.5
Nitrate as Nitrogen, ppm	24.8	7.7*	0 - 10	23
Nitrate as NO3, ppm	109	33.8*	0 - 44	100
Total Coliform, colonies per 100 ml	<1		< 1	15
E.Coli, Colonies per 100 ml	<1		< 1	10
Hardness, ppm CaCO3	280	208*	0 - 180	
Total Dissolved Solids (TDS), ppm	556	368	0 - 500	3000
Chloride, ppm	68	59	0 - 250	300
Sulfates, ppm	39	81	0 - 250	500
Calcium (Ca), ppm	75.4	65	0 - 100	150
Phosphorus (P), ppm	0.252	0.7	0 - 0.3	0.7
Magnesium (Mg), ppm	22.3	24	0 - 29	100
Potassium (K), ppm	3.32	4	0 - 20	20
Sodium (Na), ppm	62.8	46	0 - 100	300
Iron (Fe), ppm	<0.05	0.79	0 - 0.03	0.4 (taste)
Manganese (Mn), ppm	0.123	0.17	0 - 0.05	0.05 (taste)
Zinc (Zn), ppm	0.033	0.12	0 - 5	25
Copper (Cu), ppm	<0.01	0.07	0 - 0.6	0.6

[&]quot;Farm Survey Average" is from a survey of 3600 water samples collected from livestock operations throughout the United States in a study by Socha et al. Those values with an * are an average of 350 samples from problem farms reported by R. Adams and W. Sharpe. "Expected Levels" are based primarily on criteria for water fit for human consumption. "Possible Problem Levels for Cattle" is based primarily on research literature and field experiences. Source: Variability of Water Composition and Potential Impact on Animal Performance. Mike T. Socha, et al. University of Nebraska, North Platte, NE 69101; Water Intake and Quality for Dairy Cattle. Richard S. Adams and William Sharpe. Penn State College of Agricultural Sciences, Cooperative Extension.