Corn Silage Evaluation: MILK2000 Challenges & Opportunities With MILK2006

Professor Randy Shaver

Department of Dairy Science University of Wisconsin - Madison University of Wisconsin - Extension

Whole-Plant Corn Silage

80 to 98% starch digestibility

•Kernel maturity

•Kernel particle size

•Endosperm properties

40 to 70% NDFD

• lignin/NDF

Adapted from Joe Lauer, UW Agronomy

NRC (2001) Dairy TDN

TDN 1-X = tdCP + (tdFA x 2.25) + tdNDF + tdNFC -7

Why measure NDFD *in vitro* vs. calculating via lignin?

- Lignin wet chem assay difficult & its calibration with NIRS has been poor
- Lignin to NDFD equation is theoretically based
 Lignin explains only about half of the *in vitro* NDFD variation
 - Stover NDF & lignin contents & NDFD & with maturity, while WP NDF & lignin contents are constant or & as grain% increases

Relationship between lignified NDF and *in vitro* NDFD for corn & alfalfa forages

Lignin, % of NDF

30-h NDFD (adapted from Allen, 2003) vs. NDF digestibility calculated using NRC-01 lignin equation

Whole-Plant <u>Lignin, % DM</u>	Calculated <u>NDFD</u>	<u>30-h NDFD</u>
2.1	62	60
3.1	57	45
4.2	53	30

Measured NDFD or Estimated from Lignin?

NDF, %	Lignin, %	Calc. NDFD	30-h NDFD
45.0	3.52	56	46.0
45.0	3.26	57	48.4
45.0	3.32	57	54.4
45.1	3.18	57	55.0
45.0	3.43	56	67.3

Corn silage data set from Van Amburgh (2004)
 Similar relationships from 36.5 to 51.8% NDF

Adapted from: Rick Grant, NRAES Silage Conf., 2006

The incubation time-point debate

- <u>48-hr.</u>
 - Reflects maintenance intake for use in NRC summative equation
 - Less influenced by lag & rate, so possibly lower COV

- <u>30- or 24-hr.</u>
 - 30-h more closely related to ruminal retention time
 - 30-h was used in most cow trials
 - Faster lab turn-around
 - Better lab efficiency at 24-h?

The incubation time-point debate

- MILK2000
 48-h
 48-h defa
 - <u>48-h default</u>, with 30-h or 24-h User Defined Option
 - Lab average NDFD required
 NDFD DMIadjustment =

 (avg. NDFD NDFD) * 0.26
 - NDFD adjustment for summative TDN_{1x} equation

Adapted from Coors (data from Justen, 2004).

Variation in "normal " corn silage NDF digestibility calculated using NRC-01 lignin equation and table data

Whole-Plant	Calculated	
<u>Lignin, % DM</u>	<u>NDFD</u>	
1.0 (2stdev)	65	
1.8 (1stdev)	61	
2.6 (avg.)	59	
3.4 (1 stdev)	56	
4.2 (2stdev)	56	

NDFD -- MILK2000 vs. MILK2006

<u>MILK2000</u>

- A 1%-unit change in NDFD from lab average NDFD changes DMI 0.37 lb (Oba and Allen, 1999, JDS)
- Double counting of TDN & DMI changes related to changes in NDFD
 - Tine et al. (2001, JDS) and Oba and Allen (1999, JDS)
 - At production levels of intake, NDFD has minimal impact on NEL content but does impact NEL intake primarily thru its impact on DMI
- Calculation of NE_{L-3x} from TDN_{1x} as per NRC (1989)

<u>MILK2006</u>

- A 1%-unit change in NDFD from lab average NDFD changes DMI 0.26 lb (Jung, 2004, MN Nutr. Conf.; Oba and Allen, 2005, Tri-State Nutr. Conf.)
- NDFD used for calculating NE_{L-3x} adjusted for impact of NDFD on DMI (Oba and Allen, JDS, 1999)
- Calculation of NE_{L-3x} from TDN_{1x} via DE and ME as per NRC (2001)

Corn Silage NDFD% vs. NEL3x

Calculated assuming corn silage with 35% DM proc., 27% starch, 45% NDF, and 58% avg. NDFD

Corn Silage NDFD% vs. Milk per Ton

Calculated assuming corn silage with 35% DM proc., 27% starch, 45% NDF, and 58% avg. NDFD 4065

NRC (2001) Dairy TDN

TDN 1-X = tdCP + (tdFA x 2.25) + tdNDF + tdNFC -7

NRC (2001) Dairy TDN

PAF

1.00

1.04

0.94

0.87

tdNFC = *NFC*% x 0.98 x *PAF*

Corn grain, ground dry Corn grain, ground high moisture Corn silage, normal Corn silage, mature

Schwab-Shaver Energy Equation

 $TDN_{1-x} =$

DIG_{CP} + DIG_{FA} + DIG_{Starch} + DIG_{NSTNFC} + DIG_{NDF} - 7

Predicted Starch Digestibility

Adapted from Schwab et al., 2003.

Differences in calculation of tdNFC

Based on corn silage with 41% NFC & 28% starch

WP <u>DM %</u>	NRC-01 <u>tdNFC%</u>	Schwab et al., 2003 <u>tdStarch&NSTNFC%</u>	
		Unprocessed	Processed
30	40	40	40
35	38	39	40
40	35	36	39
45	35	34	38

Corn Silage WP DM% vs. TDN_{1x}

Corn Silage WP DM% vs. Milk per Ton

Calculated assuming corn silage with 27% starch, 45% NDF, and 58% NDFD

Evaluating Starch Digestion in Ruminants.....

In Vivo..... Total Tract Collections & Digesta Markers Cannulae (Rumen, Duodenum, Ileum)

Macro In Situ.... Rumen cannulae Incubation time? Starch-Feeds cannot be fine ground Post-Ruminal Enzymatic?

In Vitro.... Rumen fluid Incubation time ? Starch-Feeds cannot be fine ground Post-Ruminal Enzymatic?

Corn Silage Processing Score Mertens, USDFRC & Dairyland Labs, Arcadia, WI

Ro-Tap Shaker

- 9 sieves (0.6 thru 19 mm) and pan
- Analyze for starch on 4.75 mm & greater sieves

% of starch passing <u>4.75 mm sieve</u> >70% 70% to 50% < 50%

<u>CSPS</u> Optimum Average Poor

Kernels and Large Fragments Were Retained on > 4.75-mm Sieves

US Dairy Forage Research Center

Corn Silage KPS vs. TDN_{1x}

Degree of Starch Access (DSA) Blasel, Hoffman and Shaver, JAFST, 2006

- Adaptation of food industry assay "Degree of Starch Gelatinization"
- Detects particle size, moisture, and vitreousness differences in corn samples
- Appears to offer better characterization of processed corn silage samples than KPS
- DSA can be related to total tract starch digestion
 - More animal validation data needed
- Pilot study of assay across labs in progress

DSA vs. Total Tract Starch Digestibility from Literature Sources

MILK2006: Starch Digestion User Defined Options

Default

- WP DM & Kernel Processing Regressions
- KPS
- DSA

Ruminal in situ plus post-ruminal in vitro

TDN_{1x} Simulation -- Input Extremes

Milk per Ton Simulation -- Input Extremes

Treatment differences for model-predicted milk per ton versus milk per ton from in vivo data

Calculated from 10 JDS papers with 13 comparisons

Treatment differences for model-predicted milk per day versus milk per day in vivo data

Calculated from 10 JDS papers with 13 comparisons

UW Correlations n = 3727 treatment means

r-values	Milk per Ton DM 2006	Milk per Ton DM 2000	Milk per Ton DM 1995	Milk per Ton DM 1991
NDF	-0.46	-0.40	-0.94	-0.99
Starch	0.48	0.44	0.75	0.74
NDFD	0.49	0.70	0.16	-0.10
StarchD	0.30	0.21	-0.25	-0.27

UW Correlations n = 3727 treatment means

r-values	Milk per Acre	Milk per Acre	Milk per Acre	Milk per Acre
	2006	2000	1995	1991
DM Yield				
tons/acre	0.97	0.97	0.88	0.85
Milk per Ton DM	0.23	0.20	0.52	0.61

Relationship between milk per acre and milk per ton of corn hybrids in South Central WI during 2002.

Visit UW-Madison Dairy Science Department's Website

http://www.wisc.edu/dysci/

EXCELLENCE IN EDUCATION AND DISCOVERY UNIVERSITY OF WISCONSIN - MADISON

www.wisc.edu/dysci

